С учетом извещения ИЛАВ.13-15 от 05.11.15г Код ОКП 639000

Группа

17	TD	DD.	ALC II	T A 1	$\mathbf{\Omega}$
У	ID.	CĽ.	ЖД	LΑJ	U

Генеральный директор

ЗАО «ММП-Ирбис»

_____ Лукин А.В. « » 2014 г.

МОДУЛИ ПИТАНИЯ СТАБИЛИЗИРУЮЩИЕ

CMB200

Технические условия

ТУ 6390-082-40039437-11

Дата введения 10.11.2014

СОГЛАСОВАНО

Главный конструктор

_____ Бокунов А.В.

«____»____2014 г.

2014 г.

	I		I	1
ИНВ № ПОДЛ	ПОДП И ДАТА	ВЗАМ ИНВ №	ИНВ № ДУБЛ	ПОДП И ДАТА
				ФОРМАТ А4

СОДЕРЖАНИЕ

	Лист					
1 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ	3					
2 ПРАВИЛА ПРИЕМКИ	9					
3 МЕТОДЫ КОНТРОЛЯ						
4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	17					
5 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	17					
6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	19					
Приложение А (справочное) Перечень контрольно-измерительной аппаратуры и испытательного оборудования, применяемых при						
испытаниях модулей	20					
Приложение Б (рекомендуемое) Схема проверки электрических						
параметров модулей	21					
Приложение В (справочное) Габаритный чертеж модулей	22					
Приложение Г (обязательное) Схема проверки амплитуды пульсаций						
выходного напряжения модулей	24					
Приложение Д (рекомендуемое) Схема проверки тепловой защиты						
модулей	25					
Приложение Е (рекомендуемое) Типовая схема включения модулей	25					
Приложение Ж (рекомендуемое) Схема параллельного включения						
модулей на общую нагрузку						
Приложение И (справочное) Перечень документов, на которые даны						
ссылки в технических условиях	28					

							ТУ 6390-082-40	039437	7-11	
ИЗМ	Л	№ Д	ĮОКУМ	ПОДП	ДАТА	МОДУЛИ ПИТАНИЯ СТАБИЛИЗИРУЮЩИЕ		ЛИТ	Л	Л-В
PA3PA	λБ.	Bepe	сова		28.10.14			JIFII	71	71-15
ПРОВ.	ОВ. Титаев		ев			1		٨	2	29
ГЛ. КС	OHC.	Боку	НОВ				CMB200	Α		29
Н. КОІ	HTP.	Bepe	сова			TEVIII	ЧЕСКИЕ УСЛОВИЯ		•	
УТВ.		Кастр	ООВ			IEAH	РАСКИЕ УСЛОВИЯ			
				•						
ИНВ № ПОДЛ		ПОДП І	<i>I</i> ДАТА	ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И ДАТА			
	ΦOPMAT A4									

Настоящие технические условия (ТУ) распространяются на модули питания стабилизирующие СМВ200 (далее – модуль), предназначенные для питания напряжением постоянного тока радиоэлектронной аппаратуры.

Вид климатического исполнения УХЛ категория 2.1 по ГОСТ 15150. Диапазон рабочих температур от минус $40\,^{\circ}$ С окружающей среды до $+85\,^{\circ}$ С на корпусе.

Настоящие ТУ устанавливают технические требования к модулю, правила приемки и испытаний модуля и предназначены для предприятия-изготовителя и ОТК при изготовлении, сдаче и приемке.

Модули выпускаются одного типа. Типономиналы в соответствии с таблицей 1.

Условное обозначение модуля при заказе или в конструкторской документации другого изделия:

Модуль питания СМВ200В ТУ 6390-082-40039437-11.

Где СМ – модуль питания;

третья буква (В) — диапазон входного напряжения;

цифры (200) — мощность;

последняя буква (В) – выходное напряжение.

1 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1 Модуль должен соответствовать требованиям настоящих технических условий и комплекта конструкторской документации указанного в графе 9 таблицы 1.
 - 1.2 Конструктивно-технические требования
- 1.2.1 Габаритные, установочные и присоединительные размеры модуля должны соответствовать размерам, приведенным в приложении В.
- 1.2.2 На поверхности модуля не должно быть сколов, царапин и других дефектов, ухудшающих внешний вид.
- 1.2.2.1 Герметизирующий материал должен полностью укрывать все элементы и иметь ровную поверхность.

Затекание герметизирующего материала на выводы модуля не должно превышать 0,5 мм от уровня заливочного компаунда (1.8 ОСТ 4Г 0.054.213). Усадочные мениски должны быть не более 1 мм от уровня заливочного компаунда.

Допускаются:

- разнотонность окраски поверхности компаунда;
- волосовидные разводы на поверхности компаунда;
- просматривание через тонкий слой компаунда элементов, установленных на печатной плате.

									ЛИСТ
						ТУ 6390-082-40039437-11			2
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА				3
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА		ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И ДАТА			
								ФОР	MAT A4

- 1.2.3 Масса модуля, измеренная с погрешностью $\pm\,0.5\,$ г должна быть не более $340\,$ г.
- 1.2.4 Комплектующие элементы и материалы должны применяться в условиях и режимах соответствующих требованиям, указанным в стандартах и ТУ на них.

Таблица 1

		ходно яжені		e B		TOK	ИЯ,	
Условное обозначение типономинала модуля	Минимальное	Номинальное	Максимальное	Номинальное выходное напряжение, Е	Пределы выходного напряжения, В	Максимальный нагрузки, А	Ток потребления А, не более, при Uвх.ном.	Обозначение основного конструкторского документа
1	2	3	4	5	6	7	8	9
CMB200A				5	4,90 – 5,10	40,00	9,0	ИЛАВ.436437.021
CMB200B				12	11,76 – 12,24	16,67	9,0	ИЛАВ.436437.021-04
CMB200C	18	27	36	15	14,70 – 15,30	13,33	9,0	ИЛАВ.436437.021-05
CMB200E				24	23,52 - 24,48	8,33	9,0	ИЛАВ.436437.021-07
CMB200H				27	26,46 - 27,54	7,40	9,0	ИЛАВ.436437.021-08

- 1.3 Требования к электрическим параметрам
- 1.3.1 Питание модуля осуществляется от источника напряжения постоянного тока. Значения входного напряжения указаны в графах 2, 3, 4 таблицы 1.
- 1.3.2 Пределы выходного напряжения при номинальном входном напряжении (графа 3 таблицы 1) и максимальном токе нагрузке (графа 7 таблицы 1) указаны в графе 6 таблицы 1.
- 1.3.3 Максимальный ток нагрузки ($I_{H.MAKC}$) должен соответствовать значению, приведенному в графе 7 таблицы 1.

Минимальный ток нагрузки $I_{H,MUH}$ соответствует $0,1 \cdot I_{H,MAKC}$.

- В диапазоне нагрузок от $0.1 \cdot I_{H.MAKC}$ до холостого хода (x.x.) выходное напряжение не должно превышать $1.05 \cdot U_{Bых.HOM}$. Нижний порог выходного напряжения, а также величина и характер пульсации выходного напряжения в этом режиме не регламентируются.
- 1.3.4 Ток, потребляемый модулем по цепи питания при номинальном входном напряжении (графа 3 таблицы 1) и максимальном токе нагрузке (графа 7 таблицы 1), не должен превышать значения, приведенного в графе 8 таблицы 1.

									ЛИСТ
						ТУ 6390-082-40039437-11			1
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА				4
ИНВ № ПОДЛ ПОДП И ДАТА		И ДАТА	ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И ДАТА			
				•	•			ФОР	MAT A4

1.3.5 Амплитуда пульсации выходного напряжения (от пика до пика), измеренная в полосе частот до $20~\mathrm{MF}$ ц и токах нагрузки от $I_\mathrm{H.MAKC}$ до $I_\mathrm{H.MUH}$ не должна превышать $250~\mathrm{mB}$.

Измерение амплитуды пульсации выходного напряжения проводить по схеме, приведенной в обязательном приложении Г.

- 1.3.6 Нестабильность выходного напряжения при изменении входного напряжения от номинального до минимального и до максимального значений при максимальном токе нагрузки должна быть не более $\pm 1 \%$.
- 1.3.7 Нестабильность выходного напряжения при изменении тока нагрузки от 0,1· $I_{H,MAKC}$ до $I_{H,MAKC}$ должна быть не более 1 %.
- 1.3.8 Модуль должен иметь защиту от перегрузки по току и короткого замыкания (к.з.) по выходу. После снятия перегрузки или к.з. модуль должен автоматически восстанавливать свои выходные параметры. Ток срабатывания защиты $(1,05 \div 1,7)$ · $I_{H.MAKC}$. Время к.з. не ограничено.
- 1.3.9 Модуль допускает дистанционное выключение. Схема приведена в приложении Д.
- 1.3.10 Модуль имеют регулировку выходного напряжения в пределах \pm 5 %. Схема приведена в приложении Д.
- 1.3.11 Модуль имеет защиту от перенапряжения на выходе. Напряжение срабатывания защиты не более $1.4 \cdot U_{\rm BMX \ HOM}$.
- 1.3.12 Модуль имеет тепловую защиту с автоматическим возвратом. Температура срабатывания тепловой защиты +95 °C ± 9 °C на корпусе. Схема приведена в приложении E.
- 1.3.13 Коэффициент температурной нестабильности выходного напряжения, измеренный при номинальном входном напряжении (графа 3 таблицы 1) и максимальном токе нагрузки (графа 7 таблицы 1), при изменении рабочей температуры в диапазоне указанном в таблице 3 должен быть не более $\pm 0.02 \,\%$ / °C.
 - 1.4 Требования к безопасности
- 1.4.1 Электрическая прочность изоляции должна выдерживать в течение 1 мин в нормальных климатических условиях без пробоя и поверхностного перекрытия воздействие испытательного напряжения постоянного тока величиной:
 - 500 B между входными выводами и выходными выводами;
 - 500 В между входными выводами и выводом «⊥» (корпус);
 - 500 В между выходными выводами и выводом «⊥» (корпус).
- 1.4.2 Сопротивление изоляции модуля между входными и выходными выводами должно быть не менее:
 - 20 MOм в нормальных климатических условиях;
 - 5 МОм при повышенном значении рабочей температуры;
 - 1 МОм при повышенной влажности.

									ЛИСТ
						ТУ 6390-082-40039437-11		5	
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА				٦
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА		B3AM V	ИНВ №	ИНВ № ДУБЛ	ПОДП И ДАТА			
								ФОР	MAT A4

- 1.5 Требования по стойкости к внешним воздействующим факторам
- 1.5.1 Модуль должен быть стойким к воздействию механических факторов, приведенных в таблице 2.

Таблица 2

Воздействующий фактор и его характеристики	Значение	Примечание
	характеристики	
Синусоидальная вибрация		
– диапазон частот, Гц	0,5-200	
$-$ амплитуда ускорения, м/ c^2 (g)	20 (2)	
Механический удар одиночного действия		
$-$ пиковое ударное ускорение, м/c 2 (g)	200 (20)	
– длительность действия ударного ускорения, мс	≤ 10	
– число ударов в каждом направлении	3	
Механический удар многократного действия		
$-$ пиковое ударное ускорение, м/c 2 (g)	100 (10)	
– длительность действия ударного ускорения, мс	10	
– число ударов в каждом эксплуатационном		
положении не менее	20	
– частота ударов уд/мин	60 - 120	

1.5.2 Модуль должен быть стойким к воздействию климатических факторов, приведенных в таблице 3.

Таблица 3

Воздействующий фактор и его	Значение	Примономио
характеристики	характеристики	Примечание
Пониженная температура среды, °С		
– рабочая	Минус 40	
– предельная	Минус 55	
Повышенная температура на корпусе, °С	+ 85	
Повышенная относительная влажность		
воздуха при 25 °C, %	95	

Примечание — По договоренности между потребителем и изготовителем возможно изготовление модулей с параметрами, отличающимися от приведенных в таблице 1 и требованиях 1.3 (электрические параметры); 1.4 (безопасность); 1.5 (внешние воздействующие факторы).

						ТУ 6390-082-40039437-11			6
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА				O
ИНВ № ПОДЛ ПОДП И ДАТА			ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И ДАТА			
								ФОР	MAT A4

- 1.6 Требования по надежности
- 1.6.1 Срок службы 15 лет.
- 1.6.2 Срок сохраняемости в условиях 1 группы по ГОСТ 15150 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей, а также вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП должен быть не менее 12 лет.

1.7 Комплектность

1.7.1 В комплект поставки модуля входят составные части, указанные в таблице 4.

Таблица 4

Наименование составной части	Условное обозначение	Кол-во	Обозначение конструкторских документов
1	2	3	4
1 Модуль	CMB200A	1	ИЛАВ.436437.021
	(CMB200B)		(ИЛАВ.436437.021-04)
	(CMB200C)		(ИЛАВ.436437.021-05)
	(CMB200E)		(ИЛАВ.436437.021-07)
	(CMB200H)		(ИЛАВ.436437.021-08)
2 Этикетка		1 на	ИЛАВ.754463.001 ЭТ
		партию	
3 Упаковка		1	По кооперации

1.8 Маркировка

- 1.8.1 Место и способ маркировки установлен в конструкторской документации.
 - 1.8.2 На каждом модуле должны быть указаны:
 - 1) товарный знак предприятия-изготовителя;
- 2) условное обозначение модуля и маркировка входных и выходных выводов согласно конструкторской документации;
 - 3) заводской номер модуля;
- 4) дата изготовления (двумя первыми цифрами указывают месяц, двумя последними год).

1.8.3 Штрих код:

zzz yyyy xxvv или zzzz yyyy xxvv

где: zzz или zzzz – код модуля на предприятии;

уууу – заводской номер модуля;

- дата - xx - месяц, vv - год.

						ТУ 6390-082-40039437-11			ЛИСТ
									7
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА				/
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА		ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА		
								ФОР	MAT A4

- 1.9 Упаковка
- 1.9.1 Модуль должен быть упакован в соответствии с конструкторской документацией.
 - 1.10 Требования к обеспечению качества в процессе производства
- 1.10.1 В состав технологического процесса должны быть включены отбраковочные испытания каждого модуля под максимальной электрической нагрузкой в течение 4 часов при температуре на корпусе + 85 °C.

Mетодика -3.10.

								ЛИСТ		
						ТУ 6390-082-40039437-11			Q	
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА				0	
ИНВ	№ ПОД	ĮЛ	ПОДП И ДАТА		B3AM V	IHB №	ИНВ № ДУБЛ	подп и	ДАТА	
								ФОР	MAT A4	

2 ПРАВИЛА ПРИЕМКИ

- 2.1 Общие положения
- 2.1.1 Приемка и контроль качества модуля обеспечиваются следующими основными видами испытаний:
 - 1) квалификационные;
 - 2) приемо-сдаточные;
 - 3) периодические;
 - 4) типовые.
- 2.1.2 Правила приемки модуля должны соответствовать требованиям, установленным ГОСТ 21194 с дополнениями и уточнениями, приведенными в данном разделе.
 - 2.2 Квалификационные испытания
- 2.2.1 Для впервые осваиваемых модулей предприятием-изготовителем осуществляется изготовление установочной серии модулей и проведение квалификационных испытаний этой серии.
- 2.2.2 Квалификационные испытания проводятся в полном объеме, установленном настоящими ТУ для приемо-сдаточных и периодических испытаний.
- 2.2.3 Квалификационные испытания в соответствии с ГОСТ 15.009 проводятся предприятием-изготовителем.
- 2.2.4 По результатам изготовления и испытаний модулей установочной серии комиссия принимает решение об окончании освоения серийного производства модулей и составляет акт приемки установочной серии модулей.
 - 2.3 Приемо-сдаточные испытания
- 2.3.1 Приемо-сдаточные испытания проводят методом сплошного и выборочного контроля.

Выборочному контролю подвергают модули в количестве не менее установленном в ГОСТ 21194 методом случайной выборки.

- 2.3.2 Объем приемо-сдаточных испытаний должен соответствовать таблице 5. Примечания "+" испытания проводят; "—" испытания не проводят.
- 2.4 Периодические испытания
- 2.4.1 Периодическим испытаниям подвергают не менее трех модулей, выдержавших приемо-сдаточные испытания и не реже одного раза в год.
- 2.4.2. Перечень параметров и требований, проверяемых при периодических испытаниях, приведены в таблице 5.
- 2.4.3 Отбор образцов на испытания проводят из потока методом случайной выборки.

Отбор модулей оформляется актом по форме принятой на предприятии-изготовителе.

						ТУ 6390-082-40039437-11			ЛИСТ
									0
ИЗМ	Л	No	ДОКУМ	ПОДП	ДАТА				7
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА ВЗАМ			B3AM V	IHB №	ИНВ № ДУБЛ	подп и	ДАТА	
								ФОР	MAT A4

Таблина 5

Наименование испытаний и проверок	Приемо-с испы		Перио-	Номера пу	/НКТОВ
непытании и проверок	Сплошной	Выбороч-	испыта-	Техн.	Методов
	контроль	ный	ния	требований	испыта-
	•	контроль		-	ний
1 Контроль внешнего вида	+	1	_	1.2.2	3.2.2
2 Контроль маркировки	+	-	_	1.8	3.8
3 Контроль электрических	+	1	_	1.3.2,	3.3.2 -
параметров				$1.3.4 \div 1.3.11$	3.3.6
4 Контроль массы	_	+	_	1.2.3	3.2.3
5 Контроль габаритных,	_	+	_	1.2.1	3.2.1
установочных и присоедини-					
тельных размеров					
6 Контроль комплектности	+	ı	_	1.7	3.7
7 Испытания на прочность и	_	_	+	1.5, 1.3.12,	3.5,
устойчивость к внешним				1.3.13	3.3.7
воздействующим факторам					
8 Испытания на безотказность	_	-	+	1.6	3.6
9 Испытания на безопасность	+	_	+	1.4.1, 1.4.2*	3.4

^{*} При приемо-сдаточных испытаниях проверку сопротивления изоляции по 1.4.2 проводят только в нормальных климатических условиях

2.5 Типовые испытания

- 2.5.1 Типовые испытания проводятся для оценки целесообразности и эффективности предлагаемых изменений схемы, конструкции или технологии изготовления модулей, применяемых материалов и покупных комплектующих элементов, а также по рекламациям на модуль.
- 2.5.2 Типовым испытаниям подвергают модули, изготовленные с учетом предлагаемых изменений по предварительным извещениям.
- 2.5.3 Испытания проводят по программе и методике, которые в основном должны содержать:
- 1) необходимые испытания из состава приемо-сдаточных и периодических испытаний;
- 2) требования к количеству и порядку отбора модулей, необходимых для проведения испытаний;
 - 3) указание об использовании модулей, подвергнутых испытаниям.
- 2.5.4 Число модулей, подвергаемых типовым испытаниям, устанавливают в программе испытаний. Отбор модулей оформляют актом.
- 2.5.5 Результаты типовых испытаний оформляются актом и протоколом с отражением всех результатов испытаний.

ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА	ТУ	ТУ 6390-082-40039437-11			
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА ВЗА				ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
								ФОР	MAT A4	

3 МЕТОДЫ КОНТРОЛЯ

- 3.1 Общие положения
- 3.1.1 Контроль модулей проводят в нормальных климатических условиях, установленных ГОСТ 20.57.406, если другие не указаны при изложении конкретных методов контроля.
- 3.1.2 Перечень рекомендуемого испытательного оборудования и контрольноизмерительной аппаратуры приведен в приложении A.
 - 3.2 Контроль на соответствие требованиям конструкции
- 3.2.1 Габаритные, установочные и присоединительные размеры модуля (1.2.1) контролируют сличением с чертежами, приведенными в приложении В и измерением размеров любыми средствами измерений, обеспечивающими измерения с погрешностями, не превышающими установленные ГОСТ 8.051.
- 3.2.2 Контроль внешнего вида модуля на соответствие требованиям 1.2.2 проводят внешним осмотром.
 - 3.2.3 Контроль массы модуля (1.2.3) проводят взвешиванием на весах.
 - 3.3 Контроль на соответствие требованиям к электрическим параметрам
- 3.3.1 Электрические параметры модуля проверяют по схеме, приведенной в приложении Б.
- 3.3.2 Проверка выходных напряжений при номинальном входном напряжении (графа 3 таблицы 1) (1.3.2), тока потребления (1.3.4), дистанционного выключения внешним сигналом (1.3.9) и регулировки выходного напряжения модуля (1.3.10):
- 1) установить на источнике питания PU1 номинальное входное напряжение (графа 3 таблицы 1), контролируя его значение прибором PV1;
- 2) с помощью резистора R1 установить по выходу максимальный ток нагрузки (графа 7 таблицы 1), контролируя его значение прибором PA2;
 - 3) измерить выходное напряжение U_{вых 0} прибором PV2;
 - 4) измерить ток потребления прибором РА1;
 - 5) замкнуть цепь с помощью выключателя SA1;
 - 6) зафиксировать снижение выходного напряжения до нуля прибором PV2;
 - 7) вернуть выключатель SA1 в исходное положение;
 - 8) измерить выходное напряжение прибором PV2;
 - 9) установить перемычку 2;
- 10) измерить выходное напряжение прибором PV2. Выходное напряжение должно увеличиться не менее чем на 5 %;
 - 11) снять перемычку 2;
 - 12) установить перемычку 3;

							ЛИСТ			
						ТУ	11			
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА					
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА				ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
ФОРМАТ								MAT A4		

- 13) измерить выходное напряжение прибором PV2. Выходное напряжение должно уменьшиться не менее чем на 5 %;
 - 14) снять перемычку 3.

Результаты проверки считаются положительными, если измеренные выходного напряжения соответствуют требованиям 1.3.2. значения потребления – 1.3.4, модуль дистанционно выключается внешним сигналом (1.3.9) и регулировка выходного напряжения находится в указанном диапазоне (1.3.10).

- 3.3.3 Проверка нестабильности выходного напряжения при изменении напряжения питания от минимального до максимального значений (1.3.6):
- 1) установить на источнике питания PU1 минимальное входное напряжение (графа 2 таблицы 1), контролируя его значение прибором PV1;
- 2) с помощью резистора R1 установить по выходу максимальный ток нагрузки (графа 7 таблицы 1), контролируя его значение прибором РА2;
 - 3) измерить выходное напряжение U_{вых 1} прибором PV2;
- 4) установить на источнике питания PU1 максимальное входное напряжение (графа 4 таблицы 1), контролируя его значение прибором PV1;
 - 5) измерить выходное напряжение U_{вых 2} прибором PV2.

Нестабильности выходного напряжения К_{НЕСТ.1} (%) и К_{НЕСТ.2} (%) при изменении входного напряжения определяются по формулам (1) и (2):

$$K_{HECT.1} = \frac{U_{BbIX1} - U_{BbIX0}}{U_{BbIX0}} \cdot 100\%$$
 (1)

$$K_{\text{HECT.1}} = \frac{U_{\text{BbIX1}} - U_{\text{BbIX0}}}{U_{\text{BbIX0}}} \cdot 100\%$$

$$K_{\text{HECT.2}} = \frac{U_{\text{BbIX2}} - U_{\text{BbIX0}}}{U_{\text{BbIX0}}} \cdot 100\%$$
(2)

Где $U_{BMX\,0}$ – выходное напряжение измеренное при $U_{BX\,HOM}$, B;

 $U_{BMX,1}$ – выходное напряжение измеренное при $U_{BX,MUH}$, B;

 $U_{B \to X} - B \to X O = A O =$

Результаты проверки считаются положительными, если нестабильность выходного напряжения определенная по формулам (1) и (2) соответствует требованиям 1.3.6.

- 3.3.4 Проверка нестабильности выходного напряжения при изменении тока нагрузки от $0,1 \cdot I_{H,MAKC}$ до $I_{H,MAKC}$ (1.3.7):
- 1) установить на источнике питания PU1 номинальное входное напряжение (графа 3 таблицы 1), контролируя его значение прибором PV1;
- 2) с помощью резистора R1 установить по выходу максимальный ток нагрузки І_{н макс} (графа 7 таблицы 1), контролируя его значение прибором РА2;
 - 3) измерить выходное напряжение U_{вых,0} прибором PV2;
- 4) с помощью резистора R2 установить по выходу ток нагрузки равный 0,1 · І_{н макс}, контролируя его значение прибором РА2;
 - 5) измерить выходное напряжение U_{Bых 1} прибором PV2.

							ЛИСТ		
						ТУ	12		
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА		12		
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА			ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
								ФОР	MAT A4

Нестабильность выходного напряжения $K_{\text{HECT.3}}$ (%) при изменении тока определяется по формуле (3):

$$K_{HECT.3} = \frac{U_{BbIX1} - U_{BbIX0}}{U_{BbIX0}} \cdot 100 \%$$
 (3)

Где $U_{Bых 0}$ – выходное напряжение измеренное при $I_{H,MAKC}$, B;

 $U_{B ext{BIX 1}}$ – выходное напряжение измеренное при $0, 1 \cdot I_{H.MAKC}$, B.

Результаты проверки считаются положительными, если нестабильность выходного напряжения определенная по формуле (3) соответствует требованиям 1.3.7.

- 3.3.5 Проверка срабатывания защиты от перегрузки и короткого замыкания по выходу (1.3.8):
- 1) установить на источнике питания PU1 минимальное входное напряжение (графа 2 таблицы 1), контролируя его значение прибором PV1;
- 2) с помощью резистора R1 установить по выходу максимальный ток нагрузки (графа 7 таблицы 1), контролируя его значение прибором PA2;
 - 3) измерить ток потребления прибором РА1;
 - 4) измерить выходное напряжение прибором PV2;
- 5) плавно уменьшая сопротивление нагрузки от максимального значения до нуля, контролировать ток потребления прибором PA1 и ток нагрузки прибором PA2. При токе нагрузки равном $1,05 \cdot I_{H.MAKC}$ выходное напряжение не должно измениться более чем на 3 % от измеренного при $I_{H.MAKC}$. Снижение выходного напряжения более чем на 3 % от измеренного при $I_{H.MAKC}$, должно произойти при токе нагрузки лежащем в интервале $1,05 \cdot I_{H.MAKC} \le I_H \le 1,7 \cdot I_{H.MAKC}$, что свидетельствует о начале срабатывания защиты от перегрузки по току;
- б) плавно увеличивая сопротивление нагрузки от нуля до максимального значения, контролировать выходное напряжение прибором PV2, а ток нагрузки прибором PA2;
- 7) результаты проверки считаются положительными, если выходное напряжение соответствует требованию 1.3.2, а ток нагрузки 1.3.3;
- 8) установить перемычку 1, что соответствует режиму к.з. модуля. Длительность к.з. неограниченна;
- 9) измерить выходное напряжение прибором PV2. Выходное напряжение должно быть не более 0,25 В;
 - 10) снять перемычку 1, что соответствует отмене к.з.;
- 11) установить на источнике питания PU1 максимальное входное напряжение (графа 4 таблицы 1), контролируя его значение прибором PV1;
 - 12) повторить операции 3.3.52) 3.3.510).

Результаты проверки считаются положительными, если после отмены режима к.з. происходит восстановление работоспособности модуля, выходное напряжение соответствует требованию 1.3.2, а ток нагрузки -1.3.3.

							ЛИСТ		
						ТУ 6390-082-40039437-11			13
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА				13
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА			ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
								ФОР	MAT A4

- 3.3.6 Измерение амплитуды пульсации выходного напряжения (1.3.5) проводят прибором PO1. Схема для измерений приведена в обязательном приложении Г.
- 1) Подсоединить набор резисторов R3, R4. Проверить величину суммарного сопротивления прибором PV2. После контроля прибор PV2 отключить;
- 2) подключить источник питания PU1 и установить на нем минимальное входное напряжение в соответствии с графой 2 таблицы 1, контролируя его значение прибором PV1;
 - 3) измерить амплитуду пульсации (от пика до пика) прибором РО1;
- 4) установить на входе модуля номинальное входное напряжение в соответствии с графой 3 таблицы 1, контролируя его значение прибором PV1;
 - 5) измерить амплитуду пульсации (от пика до пика) прибором РО1;
- 6) установить на входе модуля максимальное входное напряжение в соответствии с графой 4 таблицы 1, контролируя его значение прибором PV1;
 - 7) измерить амплитуду пульсации (от пика до пика) прибором РО1;
 - 8) отключить источник питания PU1;
 - 9) отсоединить набор резисторов R3, R4;
- 10) подсоединить набор резисторов R5, R6. Проверить величину суммарного сопротивления прибором PV2. После контроля прибор PV2 отключить;
 - 11) повторить операции 3.3.62) 3.3.68);
 - 12) отсоединить набор резисторов R5, R6.

Результаты проверки считаются положительными, если амплитуда пульсации выходного напряжения соответствует требованию 1.3.5.

3.3.7 Проверка тепловой защиты модуля (1.3.12)

Проверку проводят при периодических испытаниях на воздействие повышенной температуры.

Схема проверки приведена в приложении Д.

- 1) Установить на источнике питания PU1 номинальное входное напряжение (графа 3 таблицы 1), контролируя его значение прибором PV1. Включить модуль;
- 2) с помощью резистора R2 установить по выходу максимальный ток нагрузки ($I_{H.MAKC}$), контролируя его значение прибором PA2;
 - 3) измерить выходное напряжение модуля прибором PV2;
- 4) поместить модуль в камеру тепла и включить его. Постепенно поднимая температуру, добиться установления на корпусе модуля значения + 87 °C. Измерить выходное напряжение модуля прибором PV2. Измеренное значение напряжения должно соответствовать требованию 1.3.2 с учетом требований 1.3.7, 1.3.13;
- 5) выключить модуль. Поднять температуру в камере до величины + 110 °C на корпусе модуля;
- 6) включить модуль, измерить выходное напряжение прибором PV2. Напряжение должно быть не более 0,25 B, что свидетельствует о срабатывании тепловой защиты;

						ТУ 6390-082-40039437-11			14	
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА					
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА				ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
ФОРМАТ								MAT A4		

- 7) выключить модуль. Снизить температуру в камере до величины + 85 °C на корпусе модуля;
- 8) подать питание на модуль и измерить выходное напряжение модуля прибором PV2. Измеренное значение напряжения должно соответствовать требованию 1.3.2 с учетом требований 1.3.7, 1.3.13.

Результаты проверки считаются положительными, если при температуре на корпусе $+110\,^{\circ}$ С включение модуля обнаруживает отсутствие выходного напряжения, а при снижении температуры на корпусе до величины $+85\,^{\circ}$ С выходное напряжение соответствует требованиям $1.3.2\,^{\circ}$ с учетом требований 1.3.7, 1.3.13.

- 3.4 Контроль на соответствие требованиям безопасности
- 3.4.1 Проверку электрической прочности изоляции (1.4.1) модулей проводят на установке TW1 путем приложения испытательного напряжения постоянного тока величиной:
- $-500\,\mathrm{B}$ между входным выводом «— Вход» и выходным выводом «— Выход»;
 - -500 B между входным выводом «— Вход» и выводом « \bot » (корпус);
 - -500 B между выходным выводом «– Выход» и выводом « \bot » (корпус).

Предварительно соединить попарно вывода: «– Вход» и «+ Вход»; «– Выход» и «+ Выход».

Повышение напряжения до испытательного значения проводят плавно или ступенями со скоростью примерно 10 % от испытательного напряжения в 1 с.

Изоляцию проверяют испытательным напряжением в течение 1 мин, после чего напряжение плавно или ступенями снижают до нуля.

Погрешность установки испытательного напряжения не должна превышать $\pm 5 \%$.

Модуль считаются выдержавшим проверку, если:

- в процессе проверки не наблюдались пробой и поверхностное перекрытие изоляции;
 - выходное напряжение, измеренное после проверки, соответствует 1.3.2.
- 3.4.2 Проверку сопротивления изоляции (1.4.2) в нормальных климатических условиях проводят прибором PR1. Испытательное напряжение 100 В подается между входными выводами и выходными выводами.

Предварительно соединить попарно вывода: «– Вход» и «+ Вход»; «– Выход» и «+ Выход».

Показания отсчитываются по истечении 1 мин после подачи испытательного напряжения.

Модуль считается выдержавшим проверку, если сопротивление изоляции не менее 20 МОм.

							ЛИСТ		
						ТУ 6390-082-40039437-11			15
ИЗМ	Л	No	ДОКУМ	ПОДП	ДАТА				13
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА			B3AM V	ІНВ №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
ФОРМАТ А4									MAT A4

- 3.5 Испытания на устойчивость модулей к внешним воздействующим факторам (1.5) проводят по методикам, утвержденным главным инженером предприятия-изготовителя.
- 3.6 Испытания на надежность модулей (1.6) проводят по методикам, утвержденным главным инженером предприятия-изготовителя.
 - 3.7 Контроль комплектности
- 3.7.1 Контроль на соответствие требованиям 1.7 проводят сличением представленного модуля и приложенных документов с таблицей 4.
 - 3.8 Контроль на соответствие требованиям к маркировке
- 3.8.1 Контроль маркировки на соответствие требованиям 1.8 проводят сличением с конструкторской документацией на модуль.
 - 3.9 Контроль на соответствие требованиям к упаковке
- 3.9.1 Контроль на соответствие требованиям 1.9 проводят путем проверки упаковки на соответствие требованиям конструкторской документации.
- 3.10 Отбраковочные испытания модулей по 1.10 в процессе производства проводят по методике, утвержденной главным инженером предприятия-изготовителя.

							ЛИСТ		
						ТУ 6390-082-40039437-11			16
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА		10		
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА			ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
								ФОР	MAT A4

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 4.1 Упакованные в соответствии с конструкторской документацией модули могут транспортироваться всеми видами транспорта в условиях группы 5 ГОСТ 15150 при защите их от прямого воздействия атмосферных осадков и механических повреждений.
- 4.2 Модули следует хранить в условиях 1 группы по ГОСТ 15150 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей.

5 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

5.1 Эксплуатационные режимы модуля не должны превышать значений, указанных в ТУ.

Типовая схема включения модуля приведена в приложении Д.

- 5.2 Рабочее положение модуля любое.
- 5.3 Модуль предназначен для работы от источника постоянного тока с напряжением: $(18 \div 36)$ В.
- 5.4 В зависимости от внешних механических воздействий рекомендуются следующие варианты монтажа модуля:
 - а) пайка выводов в отверстия печатной платы.

При эксплуатации модулей в стационарной аппаратуре; аппаратах и приборах, не работающих на ходу и предназначенных для кратковременной переноски людьми и перевозки;

б) пайка выводов плюс проклейка по периметру модуля (например, клеем Эласил 137-83 ТУ 6-02-1237-83).

При эксплуатации модулей в аппаратах и приборах, работающих на ходу, устанавливаемых на промышленных передвижных машинах и на неподвижном технологическом оборудовании;

в) пайка выводов плюс дополнительное механическое крепление модуля к основанию (например, при помощи винтового соединения через отверстия в корпусе модуля, либо с использованием прижимной планки при отсутствии отверстий в корпусе модуля).

При эксплуатации модулей в носимой аппаратуре и приборах, работающих на ходу, и аппаратуре и приборах, устанавливаемых на сухопутном и водном транспорте (грузовые и пассажирские суда).

- 5.5 При установке модуля на печатную плату соблюдать следующие условия:
 - 1) все выводы модуля, включая незадействованные, должны быть припаяны;
- 2) пайку выводов модулей осуществлять припоем ПОС-61 (ПОС-63) с помощью флюса ФКСп (30 %) или аналогичным.

Температура пайки не более 260 °C.

							ЛИСТ		
						ТУ 6390-082-40039437-11			17
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА				
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА			B3AM V	ИНВ №	ИНВ № ДУБЛ	подп и	ДАТА	
								ФОР	MAT A4

Время пайки на каждый вывод модуля не более 5 с;

- 3) не допускается перепайка выводов более трех раз;
- 4) запрещается кручение выводов модуля вокруг оси и изгиб выводов в плоскости корпуса модуля;
- 5) пайка модулей в печатную плату с выводами имеющие любые покрытия должна осуществляться без предварительного лужения выводов модуля. Гарантированный срок паяемости 6 месяцев со дня продажи модуля.

Примечания

1 По истечении гарантированного срока паяемости выводов модулей их необходимо перелуживать погружением в сплав «Розе» при температуре 220 °C с использованием флюсов — ФДГл, ЛТИ-120 или ФАГл. В случае если по истечению гарантированного срока вывода модуля сохраняют паяемость, то перелуживание не требуется.

Химический состав припоев и флюсов, указанных в данном пункте, технология их приготовления и способы удаления остатков флюсов после лужения или пайки указаны в ОСТ 4Γ 0.033.200 «Флюсы припои для пайки».

При использовании модулей В составе изделий потребителя, подвергающихся влагозащите или иным операциям общей технологической допускается кратковременное обезжиривание с установленными в них модулями только в спирто-бензиновой смеси 1:1 в течение более 3 мин, исключая использование вибрационных не и ультразвуковых способов обработки.

Применение других способов обезжиривания необходимо согласовать с предприятием-изготовителем модулей.

- 5.6 Не допускаются, какие либо механические воздействия на поверхность заливочного компаунда.
- 5.7 При эксплуатации предусмотрена возможность дистанционного выключения модуля внешним сигналом $I_{\rm BЫКЛ} \leq 1,0$ мА, напряжение на выводе «ВЫКЛ» $U_{\rm BЫКЛ} < 2$ В. Схема приведена в приложении Д.

При эксплуатации модуля в условиях, не требующих дистанционного выключения вывод «ВЫКЛ» оставить не задействованным.

5.8 Модуль имеет регулировку выходного напряжения в пределах не менее \pm 5 %. Схема приведена в приложении Д.

При эксплуатации модуля в условиях, не требующих регулировки, вывод «РЕГ.» оставить незадействованным.

5.9 Модуль имеет возможность организации удаленной обратной связи. Схема приведена в приложении Д.

При эксплуатации модуля в условиях, не требующих удаленной обратной связи, вывода «+ OC» и «– OC» оставить незадействованным.

5.10 Максимальная емкость нагрузки должна быть не более величины указанной в таблице Д.1 приложения Д.

1 ИЗМ	З ам		АВ.13-15 ДОКУМ	ПОДП	05.11.15 ДАТА	ТУ	ТУ 6390-082-40039437-11			
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА		ВЗАМ И	НВ №	ИНВ № ДУБЛ	подп и	ДАТА			
								ФОР	MAT A4	

5.11 Модули допускают параллельное включение для наращивания мощности или резервирования питания.

Схема включения приведена в приложении Ж.

Примечание — Если ток нагрузки превышает величину максимального тока нагрузки для одного модуля, нагрузку следует подключать после гарантированного включения всех модулей, т.е. не ранее, чем через 1 с после подачи питания или включения по выводу «ВЫКЛ». В противном случае возможно поочередное включение и уход в перезапуск (срабатывание защиты от перегрузки) модулей в связи с разбросом их задержек включения.

- $5.12~{
 m Mogyns}$ имеет защиту от перенапряжения на выходе. Напряжение срабатывания защиты не более $1,4\cdot U_{
 m BhiX,Hom}$.
- 5.13 Модуль должен работать в диапазоне температур от минус 40 °C окружающей среды до +85 °C на корпусе модуля.

Примечание — Допускается использовать любой способ охлаждения или радиатор любой конструкции, которые обеспечивают в любом рабочем режиме на корпусе модуля температуру не более + 85 °C.

- 5.14 Модуль имеет тепловую защиту с автоматическим возвратом. Температура срабатывания тепловой защиты +95 °C ± 9 °C на корпусе. Схема приведена в приложении E.
- 5.15 Типовое значение коэффициента полезного действия, измеренного при номинальном входном напряжении и максимальном токе нагрузки 85 %.
- 5.16 Расчетное время наработки между отказами в нормальных климатических условиях 500000 час.
 - 5.17 Модуль в условиях эксплуатации неремонтопригоден.

6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1 Предприятие-изготовитель гарантирует соответствие качества модуля требованиям настоящего ТУ при соблюдении условий эксплуатации, хранения и транспортирования.
- 6.2 Гарантийный срок эксплуатации 36 месяцев со дня приемки модуля представителями ОТК.
- 6.3 В случае обнаружения в модуле дефектов, при условии правильной эксплуатации и хранения в течение гарантийного срока, по вине предприятия-изготовителя производится замена модуля предприятием-изготовителем в кратчайший, технически возможный, срок.

Предприятие-изготовитель снимает гарантии при наличии на модуле следов ударов (вмятин, царапин и т.д.).

						ТУ 6390-082-40039437-11			19		
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА						
ИНВ	№ ПОД	ĮЛ	подп и	ДАТА	B3AM V	НВ № ИНВ № ДУБЛ ПОДП И			ДАТА		
	•	•						ФОР	MAT A4		

Приложение А

(справочное)

Перечень контрольно-измерительной аппаратуры и испытательного оборудования, применяемых при испытаниях модуля

Наименование оборудования,	Обозначение ТУ, ГОСТ	Кол.	Примечание
изделия	или основные технические		
	характеристики		
1 Источник питания PU1	Напряжение (0 ÷ 36) В,		
	постоянное, регулируемое,		
	ток 20 А	1	
2 Осциллограф РО1	Полоса пропускания КВО		
	0 ÷ 20 МГц	1	
3 Вольтамперметр типа			
M2038, PA1, PA2	ГОСТ 8711-78	2	
4 Цифровой мультиметр типа			
Aktakom AM-1097, PV1, PV2		2	
5 Тераомметр типа Е6-13А,			
PR1	ЯЫ2.722.004 ТУ	1	
6 Пробойная установка типа			
УПУ-10, TW1	АЭ2.771.001 ТУ	1	
7 Весы типа ВР4149	ТУ 25-7721.0074-90	1	
8 Тумблер типа ТМ-1, SA1		1	
9 Инфракрасный термометр			
FLUKE 62, Pt°		1	
п			

Примечание – Допускается применение других типов оборудования и приборов, удовлетворяющих требованиям настоящих ТУ с аналогичными характеристиками или более высокого класса

ИЗМ	Л	№	ДОКУМ	ПОДП	ЛАТА	ТУ	ТУ 6390-082-40039437-11				
	I				, ,						
ИНВ	№ ПОД	ĮЛ	ПОДП И	[ДАТА	B3AM V	НВ № ИНВ № ДУБЛ ПОДП И			ДАТА		
	ФОРМАТ А4										

Приложение Б

(рекомендуемое)

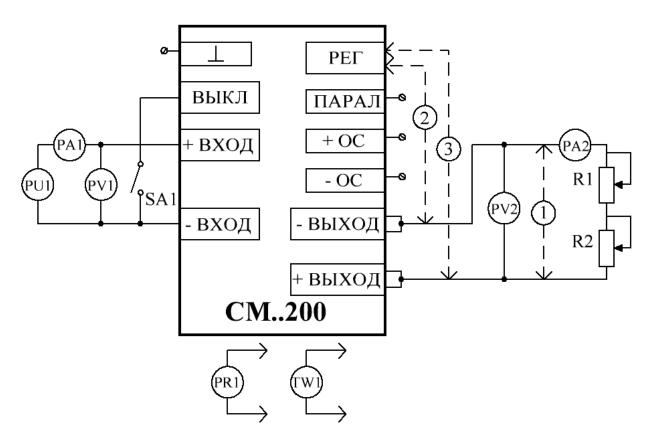


Рисунок Б.1 – Схема проверки электрических параметров модулей

Где R1, R2 – набор резисторов типа СПБ-30-25Вт-II или реостатов типа РСП соединенных последовательно или параллельно. Суммарная мощность – не менее максимальной выходной мощности модуля. Величины суммарного сопротивления рассчитываются по формулам:

$$R_{\text{MHH}} = R1 = \frac{U_{\text{BbIX.HOM}}}{I_{\text{H.MAKC}}}; \tag{5.1}$$

$$R_{MAKC} = R2 = 10 \cdot R_{MHH}; \tag{5.2}$$

1, 2, 3 – перемычки.

						ТУ	ТУ 6390-082-40039437-11			
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА					
ИНВ	№ ПОД	ĮЛ	подп и	ДАТА	ВЗАМ И	ИНВ № ИНВ № ДУБЛ ПОДП И			ДАТА	
								ФОР	MAT A4	

Приложение В (справочное)

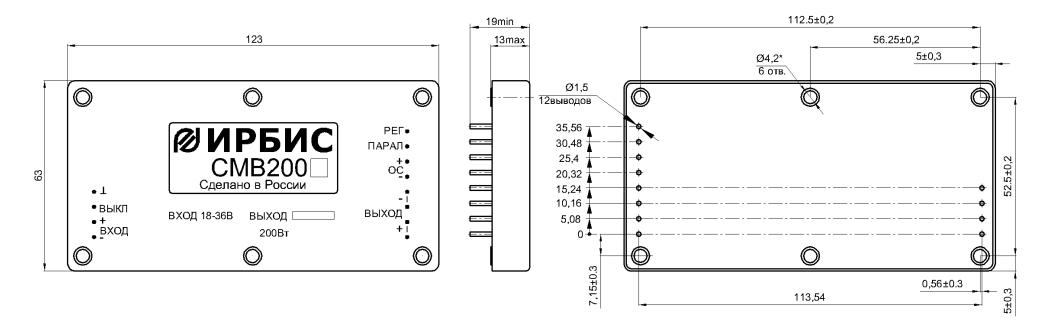


Рисунок В.1 – Габаритный чертеж модулей

Примечание — Предельные отклонения размеров между осями любых выводов \pm 0,2 мм.

ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА	ТУ	ТУ 6390-082-40039437-11			
	•	ı		, ,	, ,	•				
ИНЕ	В № ПОД	ЦЛ	ПОДП И	ДАТА	B3AM V	ИНВ №	ИНВ № ДУБЛ	ПОДП И	ДАТА	
	ФОРМАТ А4									

Приложение Г (обязательное)

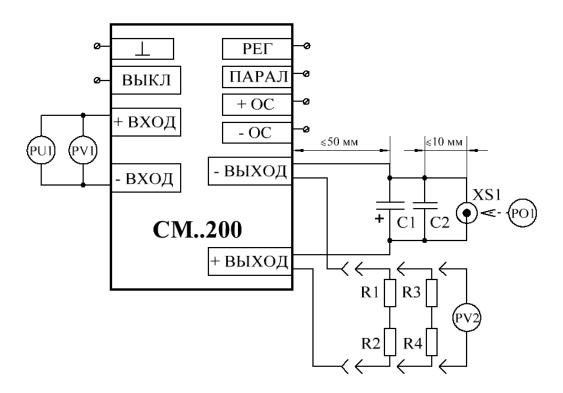


Рисунок Г.1 – Схема проверки амплитуды пульсации выходного напряжения модуля

Где С1 – электролитический конденсатор, 100 В 10 мкФ;

С2 – керамический конденсатор, 100 В 1 мкФ;

высокочастотный разъем подключения ДЛЯ стандартного осциллографического пробника. Допускается использование разъема типа BNC с подключением осциллографического пробника через BNC-адаптер.

R3, R4, R5, R6 – набор безиндуктивных резисторов типа PR02 соединенных параллельно. Суммарная мощность (R3 и R4 или R5 и R6) не менее максимальной выходной мощности модуля. Величины суммарного сопротивления рассчитываются по формулам:

$$\left(R3 + R4\right)_{MИH} = \frac{U_{BLIX,HOM}}{I_{H,MAKC}}; \tag{\Gamma.1}$$

(R3 + R4)_{мин} =
$$\frac{U_{\text{вых.ном}}}{I_{\text{н.макс}}}$$
; (Г.1)
(R5 + R6)_{макс} = $\frac{U_{\text{вых.ном}}}{0.1 \cdot I_{\text{н.макс}}}$

Примечания:

- 1 Длина выводов С1, С2 должна быть минимальной.
- 2 Конденсаторы должны располагаться в непосредственной близости (максимально близко) к выводам разъема XS1.

							ЛИСТ				
						ТУ 6390-082-40039437-11			23		
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА						
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА ВЗАМ			ВЗАМ И	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА			
	ФОРМАТ А4										

Приложение Д (рекомендуемое)

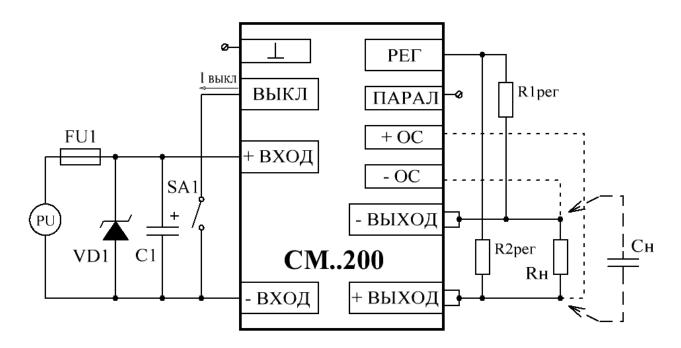


Рисунок Д.1 – Типовая схема включения модулей

Где PU – источник питания;

SA — любой механический или электрический контакт; $I_{BыKJ} < 1 \ \text{мA}, \\ U_{BыKJ} < 2 \ B;$

C1 — электролитический конденсатор 47 мк Φ с низким последовательным эквивалентным сопротивлением на частоте 100 к Γ ц. Устанавливать рядом с входом модуля, если последовательная индуктивность соединения с источником превышает 1 мк Γ ;

FU1 – предохранитель, ток срабатывания 15 А;

VD1 – ограничительный стабилитрон, типа Р6КЕЗ9А.

Примечание — Допускается использовать схему включения без элементов C1, FU1 и VD1. Работоспособность модуля и гарантии сохраняются. Однако при отсутствие FU1, C1 и VD1 возможен выход из строя модуля при превышении входного напряжения, указанного в графе 4 таблицы 1.

R1per, R2per – регулировочные резисторы для увеличения или уменьшения выходного напряжения соответственно. Значение R1per и R2per от 0 до 1 МОм;

Rн – нагрузка;

									ЛИСТ
						ТУ 6390-082-40039437-11			24
ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА		24		
ИНВ	№ ПОД	ĮЛ	ПОДП И	[ДАТА	B3AM V	IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА
								ФОР	MAT A4

Сн – емкость нагрузки. Максимально допустимая величина указана в таблице Д1.

Примечание – По договору между изготовителем и потребителем возможно изготовление модулей, допускающих работу на большую емкость в нагрузке.

Таблица Д.1

Типономинал	Максимально допустимая
модуля	емкость нагрузки Сн, мкФ
1	2
CMB200A	5000
CMB200B	800
CMB200C	600
CMB200E	470
CMB200H	470

Примечания

1 Соответствие модулей настоящим ТУ (в части электрических параметров) проверяется на активной нагрузке (резисторы). Гарантируется работоспособность модулей при работе на нагрузку типа «генератор тока» с подключением нагрузки при достижении модулем выходного напряжения не менее 35 % от установившегося (номинального) значения.

Нелинейный характер нагрузки (лампы накаливания, галогенные лампы, источники вторичного электропитания и.т.д.), а также нагрузки с большей, чем установленная настоящими ТУ, емкостной составляющей должны оговариваться при заказе модулей.

- 2 Показанные пунктиром соединения «- OC» и «+ OC» с нагрузкой используются для удаленного от модуля потребителя. При установке модуля на печатную плату рядом с нагрузкой выводы «- OC» и «+ OC» оставить незадействованными.
- 3 При эксплуатации модуля в условиях, не требующих дистанционного выключения и регулировки, выводы «ВЫКЛ» и «РЕГ» оставить незадействованным.

								ЛИСТ	
						ТУ 6390-082-40039437-11			25
ИЗМ	Л	No	ДОКУМ	ПОДП	ДАТА		23		
ИНВ	№ ПОД	ĮЛ	ПОДП И	І ДАТА	B3AM V	НВ № ИНВ № ДУБЛ ПОДП И			ДАТА
	ФОРМАТ А4								

Приложение E (рекомендуемое)

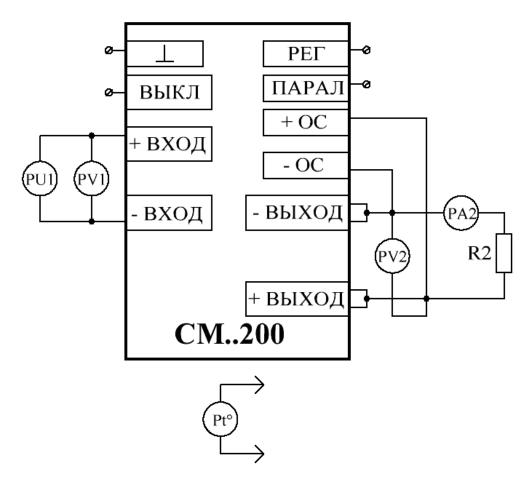


Рисунок Е.1 – Схема проверки тепловой защиты модулей

Где R2 — набор резисторов типа СПБ-30-25Вт-II или реостатов типа РСП соединенных последовательно или параллельно. Величина суммарного сопротивления рассчитывается по формуле (Б.2) приложения Б.

ИЗМ	Л	№	ДОКУМ	ПОДП	ДАТА	ТУ	ТУ 6390-082-40039437-11			
ИНВ	ИНВ № ПОДЛ ПОДП И ДАТА ВЗАМ			IHB №	ИНВ № ДУБЛ	ПОДП И	ДАТА			
	ФОРМАТ А4									

Приложение Ж (рекомендуемое)

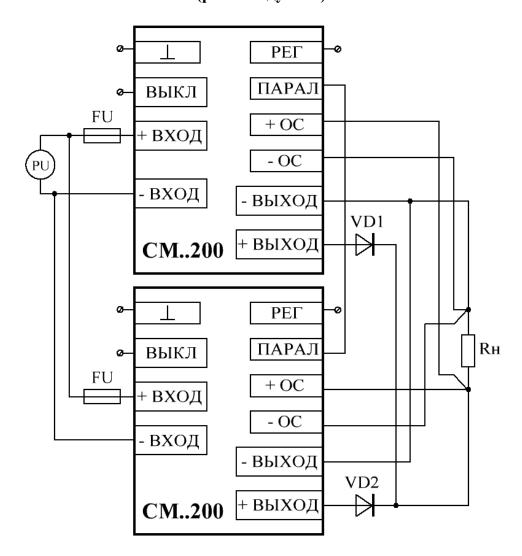


Рисунок Ж.1 – Схема параллельного включения модулей на общую нагрузку

Где FU – предохранители, ток срабатывания 15 A; Rн – нагрузка.

Примечания

1 При использовании схемы для резервирования рекомендуется устанавливать диоды VD1 и VD2 (типа «Шоттки» или аналогичные) с параметрами: $U_{VD.MAKC} > U_{Bbix.MAKC}$; $I_{VD.MAKC} > 1,2 \cdot I_{H.MAKC}$ для защиты силовой цепи от к.з.

При подключении «+ OC» за диодами не происходит изменение U_{BbIX} .

2 При использовании схемы для наращивания мощности диоды допускается не устанавливать.

									ЛИСТ		
						ТУ 6390-082-40039437-11			27		
ИЗМ	Л	No	ДОКУМ	ПОДП	ДАТА		21				
ИНВ	№ ПОД	ĮЛ	ПОДП И	І ДАТА	B3AM V	НВ № ИНВ № ДУБЛ ПОДП И			ДАТА		
								ФОР	MAT A4		

Приложение И

(справочное)

Перечень документов, на которые даны ссылки в технических условиях

No	Обозначение НТД,	Номер пункту ТУ,
Π/Π	на который дана ссылка	в котором дана ссылка
1	ГОСТ 15150-69	Вводная часть; 1.6.2; 4.1; 4.2
2	ОСТ 4Г 0.054.213-76	1.2.2
3	ГОСТ 21194-87	2.1.2; 2.3.1
4	ГОСТ 15.009-91	2.2.3
5	ГОСТ 20.57.406-81	3.1.1
6	ГОСТ 8.051-81	3.2.1
7	ОСТ 4Г 0.033.200-78	5.5

									ЛИСТ
						ТУ 6390-082-40039437-11			28
ИЗМ	Л	No	ДОКУМ	ПОДП	ДАТА		20		
ИНВ № ПОДЛ			ПОДП И ДАТА		ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И	ДАТА
	ФОРМАТ А4								

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Н	омера листо	в (страни	ц)	Всего		Входящий		
		заме-	новых	аннули- к рован- ных	листов		номер	Подпись	Пото
	изме- ненных				(стра-	$N_{\underline{0}}$	сопрово-		
					ниц) в	документа	дительного	Подпись	Дата
					доку-		документа		
					менте		и дата		
1	_	18	_	_	2	ИЛАВ.13–15	_	Вересова	05.11.15

						ТУ 6390-082-40039437-11			ЛИСТ
									29
ИЗМ	Л	№,	ДОКУМ	ПОДП	ДАТА		29		
ИНВ № ПОДЛ		ПОДП И ДАТА		ВЗАМ ИНВ №		ИНВ № ДУБЛ	ПОДП И ДАТА		
	ФОРМАТ А4								